Table of Contents

Executive Summary ... 1
[1] Introduction ... 2
[2] Heterogeneous Networks .. 3
 2.1 Traditional Network Deployment Approach 3
 2.2 An Alternate Approach Using Heterogeneous Network 3
 2.3 Technology Performance ... 4
 3.1 Range extension .. 5
 3.2 Advanced Interference Management 7
 3.2.1 Intercell Interference Coordination (ICIC) 7
 3.2.2 Slowly-Adaptive Interference Management 8
[4] Conclusion ... 9
[6] References ... 10
Executive Summary

Long-Term Evolution (LTE) allows operators to use new and wider spectrum and complements 3G networks with higher data rates, lower latency and a flat IP-based architecture. To further improve broadband user experience in a ubiquitous and cost effective manner, 3GPP has been working on various aspects in the framework of LTE Advanced.

Since radio link performance is approaching theoretical limits with 3G Enhancements and LTE, the next performance leap in wireless networks will come from the network topology. LTE Advanced is about improving spectral efficiency per unit area. Using a mix of macro, pico, femto and relay base-stations, heterogeneous networks enable flexible and low-cost deployments and provide a uniform broadband experience to users anywhere in the network.

This paper discusses the need for an alternative deployment model or topology using heterogeneous networks. To enhance the performance of these networks, advanced techniques are described which are needed to manage and control interference and deliver the full benefits of such networks. Range extension allows more user terminals to benefit directly from low-power base-stations such as picos, femtos, and relays. Adaptive inter-cell interference coordination provides smart resource allocation amongst interfering cells and improves inter-cell fairness in a heterogeneous network. In addition, the performance gains with heterogeneous networks using an example macro/pico network are shown.
[1] Introduction

Developed by 3GPP, LTE is the leading OFDMA wireless mobile broadband technology. LTE offers high spectral efficiency, low latency and high peak data rates. LTE leverages the economies of scale of 3G, as well as the ecosystem of infrastructure and devices vendors to provide the highest performance in a cost effective manner.

The LTE standard was first published in March of 2009 as part of the 3GPP Release 8 specifications. Comparing the performance of 3G and its evolution to LTE, LTE does not offer anything unique to improve spectral efficiency, i.e. bps/Hz. LTE improves system performance by using wider bandwidths if the spectrum is available.

3GPP has been working on various aspects to improve LTE performance in the framework of LTE Advanced, which include higher order MIMO, carrier aggregation (multiple component carriers), and heterogeneous networks (relays, picos and femtos). Since improvements in spectral efficiency per link is approaching theoretical limits with 3G and LTE, as shown in Figure 1, the next generation of technology is about improving spectral efficiency per unit area. In other words, LTE Advanced needs to provide a uniform user experience to users anywhere inside a cell by changing the topology of traditional networks. A key aspect of LTE Advanced is about this new deployment strategy using heterogeneous networks.

Figure 1 Improvements in spectral efficiency is approaching theoretical limits
[2] Heterogeneous Networks

2.1 Traditional Network Deployment Approach
Current wireless cellular networks are typically deployed as homogeneous networks using a macro-centric planned process. A homogeneous cellular system is a network of base-stations in a planned layout and a collection of user terminals, in which all the base-stations have similar transmit power levels, antenna patterns, receiver noise floors, and similar backhaul connectivity to the (packet) data network. Moreover, all base-stations offer unrestricted access to user terminals in the network, and serve roughly the same number of user terminals, all of which carry similar data flows with similar QoS requirements.

The locations of the macro base-stations are carefully chosen by network planning, and the base-station settings are properly configured to maximize the coverage and control the interference between base-stations. As the traffic demand grows and the RF environment changes, the network relies on cell splitting or additional carriers to overcome capacity and link budget limitations and maintain uniform user experience. However, this deployment process is complex and iterative. Moreover, site acquisition for macro base-stations with towers becomes more difficult in dense urban areas. A more flexible deployment model is needed for operators to improve broadband user experience in a ubiquitous and cost-effective way.

2.2 An Alternate Approach Using Heterogeneous Network
Wireless cellular systems have evolved to the point where an isolated system (with just one base-station) achieves near optimal performance, as determined by information theoretic capacity limits. Future gains of wireless networks will be obtained more from advanced network topology, which will bring the network closer to the mobile users. Heterogeneous networks utilizing a diverse set of base-stations can be deployed to improve spectral efficiency per unit area.

Consider the heterogeneous cellular system depicted in Figure 2. This cellular system consists of regular (planned) placement of macro base-stations that typically transmit at high power level (\(~5W - 40 W\)), overlaid with several pico base-stations, femto base-stations and relay base-stations, which transmit at substantially lower power levels (\(~100 mW – 2 W\)) and are typically deployed in a relatively unplanned manner. The low-power base-stations can be deployed to eliminate coverage holes in the macro-only system and improve capacity in hot-spots. While the placement of macro base-stations in a cellular network is generally based on careful network planning, the placement of pico/relay base-stations may be more or less ad hoc, based on just a rough knowledge of coverage issues and traffic density (e.g. hotspots) in the network.
Due to their lower transmit power and smaller physical size, pico/femto/relay base-stations can offer flexible site acquisitions. Relay base-stations offers additional flexibility in backhaul where wireline backhaul is unavailable or not economical.

Figure 2 Heterogeneous Network utilizing mix of macro, pico, femto and relay base-stations

In a homogeneous network, each mobile terminal is served by the base-stations with the strongest signal strength, while the unwanted signals received from other base-stations are usually treated as interference. In a heterogeneous network, such principles can lead to significantly sub-optimal performance. In such systems, smarter resource coordination among base-stations, better server selection strategies and more advanced techniques for efficient interference management can provide substantial gains in throughput and user-experience as compared to a conventional approach of cellular communications.

2.3 Technology Performance

The potential performance improvement from LTE-Advanced heterogeneous networks can be demonstrated in an example with mixed macro/pico deployment. The 3GPP evaluation methodology specified in [2] is used with configuration 1 (uniform layout). The network consists of macro base-stations (with 43dBm transmit power and 17dB antenna gain) and 4 pico cells per macro base-station (with 30dB transmit power and 5dB antenna gain), with or without heterogeneous network enhancements.

Figure 3 shows the user data rate improvement using heterogeneous network features for downlink. As seen in the figure, both cell-edge and median user rates are improved significantly as the result of the intelligent server selection and advanced interference management techniques described in the following sections.
3.1 Range extension

A pico base-station is characterized by a substantially lower transmit power as compared to a macro base-station, and a mostly ad-hoc placement in the network. Because of unplanned deployment, most cellular networks with pico base-stations can be expected to have large areas with low signal to interference conditions, resulting in a challenging RF environment for control channel transmissions to cell-edge users. More importantly, the potentially large disparity (e.g. 20 dB) between the transmit power levels of macro and pico base-stations implies that in a mixed macro-pico deployment, the downlink coverage of a pico base-station is much smaller than that of a macro base-station.

This is not the case for the uplink, where the strength of the received signal from a user terminal at different base-stations depends on the terminal transmit power which is the same for all uplinks from the terminal to different base-stations. Hence the uplink coverage of all the base-stations is similar and the uplink handoff boundaries are determined based on channel gains. This can create a mismatch between downlink and uplink handoff boundaries, and make the base-station to user terminal association or server selection more difficult in heterogeneous networks compared to homogenous networks, where downlink and uplink handoff boundaries are more closely matched.
If server selection is predominantly based on downlink received signal strength which is used in LTE Rel-8, the usefulness of pico base-stations will be greatly diminished. This is because the larger coverage of high power base stations can limit the benefits of cell-splitting by attracting most user terminals towards macro base-stations based on the signal strength but not having enough resources at macro base-stations to efficiently serve these user terminals, while lower power base-stations may not be serving any user terminals. Even if all the lower power base-stations have at least one user terminal to serve and can use their available spectrum, the difference between the loadings of different base-stations can result in a very unfair distribution of data rates and uneven user experiences among the user terminals in the network. Therefore, from the point of view of network capacity, it is desirable to balance the load between macro and pico base-stations by expanding the coverage of pico base-stations and subsequently increase cell splitting gains. We will refer to this concept as range extension.

Enabling range extension requires mitigating the downlink interference caused by high power macro base-stations to the user terminals served by low power base-stations. This can be achieved through either interference cancellation at the user terminals or resource coordination among base-stations. The user terminals can cancel interference caused either by higher power macro stations or by close-by femto stations that the user terminals are prohibited to access. To enable resource coordination among base-stations, two different sets of resources may be allocated for two classes of high power and low power base-stations. The resources can be time domain (slots or subframes) in a synchronous system or in frequency domain (groups of sub-carriers). Capacity gains can be achieved through cell splitting on the resources that are allocated for low power base-stations, while sufficient coverage is provided by high power base-stations on the resources that are allocated to them.
A simple example of fixed resource coordination among two categories of macro and pico base-stations can be used to demonstrate potential gains from range extension. Figure 4 shows the user association statistics with and without range extension for the mixed macro and pico deployment (configuration 1 in [2]). The range extension here is achieved by performing base-station to terminal association based on path loss (associating with base-station with the minimum path loss rather than the base-station with the maximum downlink signal strength) and a fixed partitioning of resources equally between the macro and pico base-stations. As seen in the figure, range extension allows many more users to associate with the pico base-stations and enables more equitable distribution of air-link resources to each user. The effect is even more pronounced in hotspot layouts (configuration 4 in [2]) where users are clustered around pico base-stations.

3.2 Advanced Interference Management

3.2.1 Inter-cell Interference Coordination (ICIC)

In a heterogeneous network with range extension, in order for a user terminal to obtain service from a low power base-station in the presence of macro base-stations with stronger downlink signal strength, the pico base-station needs to perform both control channel and data channel interference coordination with the dominant macro interferers.
In case of femto base-stations, only the owner or subscribers of the femto base-station may be allowed to access the femto base-stations. For user terminals that are close to these femto base-stations but yet barred from accessing them, the interference caused by the femto base-stations to the user terminals can be particularly severe, this makes it very difficult to establish a reliable downlink communication to these user terminals. Hence, as opposed to homogeneous networks, where resource reuse one (with minor adjustments) is a good transmission scheme, femto networks necessitate more coordination via resource partitioning across base-stations to manage inter-cell interference.

As a result, Inter-cell Interference Coordination (ICIC) is critical to heterogeneous network deployment. A basic ICIC technique involves resource coordination amongst interfering base-stations, where an interfering base-station gives up use of some resources in order to enable control and data transmissions to the victim user terminal. More generally, interfering base-stations can coordinate on transmission powers and/or spatial beams with each other in order to enable control and data transmissions to their corresponding user terminals.

The resource partitioning can be performed in time-domain, frequency domain, or spatial domain. Time-domain partitioning can better adapt to user distribution and traffic load changes. For example, a macro base-station can choose to reserve some of the subframes in each radio frame for use by pico stations based on the number of user terminals served by pico and macro base-stations and/or based on the data rate requirements of the user terminals. Frequency domain partitioning offers less granular resource allocation and flexibility, but is the viable method especially in an asynchronous network.

3.2.2 Slowly-Adaptive Interference Management

In this approach, resources are negotiated and allocated over time scales that are much larger than the scheduling intervals. The goal of the slowly-adaptive resource coordination algorithm is to find a combination of transmit powers for all the transmitting base-stations and user terminals and over all the time and/or frequency resources that maximizes the total utility of the network. The utility can be defined as a function of user data rates, delays of QoS flows, and fairness metrics.

Such an algorithm can be computed by a central entity that has access to all the required information for solving the optimization problem, and has control over all the transmitting entities. Such a central entity may not be available or desirable in most cases due to several reasons including the computational complexity as well as delay or bandwidth limitations of the communication links that carry channel
information or resource usage decisions. As a result, a distributed algorithm that makes resource usage decisions based on the channel information only from a certain subset of nodes may be more desirable.

The coordination can be performed via the backhaul (X2 interface in LTE) and/or over-the-air (OTA) messages. For example, pico stations can send load information and resource partitioning request to macro stations using X2 messages, while macro stations send resource partitioning response and update back to pico stations. In some cases, the backhaul may not always be available between different types of base-stations or the backhaul may not meet the delay and bandwidth requirements for adaptation. Therefore, OTA messages can be used for adaptive resource partitioning.

[4] Conclusion

Heterogeneous networks and the ability to manage and control interference in networks will allow for substantial gains in the capacity and performance of wireless systems in the future. Maximizing bits per seconds per hertz per unit area by controlling inter-base-station fairness in the context of macro-pico networks enables a more uniform user experience throughout the cell, as demonstrated by the gains in the cell edge and median user experience. Heterogeneous networks allow for a flexible deployment strategy with the use of different power base-stations including femtos, picos, relays, and macros to provide coverage and capacity where it is needed the most. These techniques provide the most pragmatic, scalable and cost-effective means to significantly enhance the capacity of today's mobile wireless networks by inserting smaller, cheaper, self-configurable base-stations and relays in an unplanned, incremental manner into the existing macro cellular networks.

3GPP Third-Generation Partnership Project
DL Downlink
eNode B Evolved Node B
ICIC Inter-cell Interference Coordination
LTE Long-Term Evolution
LTE-A Long-Term Evolution Advanced
MIMO Multiple-input multiple-output
OFDM Orthogonal frequency-division multiplexing
OFDMA Orthogonal frequency-division multiple access
OTA Over the air
QoS Quality of service
RAN Radio Access Network
SINR Signal-to-Interference-and-Noise Ratio
TDM Time-Division-Multiplexing
UE User equipment
UL Uplink

[6] References
